如图AE∥BD,∠CBD=57°,∠AEF=125°,求∠C的度数,并说明理由。
计算: .
在平面直角坐标系 中,已知抛物线 与 轴交于 , 两点,与 轴交于点 .
(1)求抛物线的函数表达式;
(2)如图1,点 为第四象限抛物线上一点,连接 , 交于点 ,连接 ,记 的面积为 , 的面积为 ,求 的最大值;
(3)如图2,连接 , ,过点 作直线 ,点 , 分别为直线 和抛物线上的点.试探究:在第一象限是否存在这样的点 , ,使 .若存在,请求出所有符合条件的点 的坐标;若不存在,请说明理由.
在矩形 的 边上取一点 ,将 沿 翻折,使点 恰好落在 边上点 处.
(1)如图1,若 ,求 的度数;
(2)如图2,当 ,且 时,求 的长;
(3)如图3,延长 ,与 的角平分线交于点 , 交 于点 ,当 时,求 的值.
在"新冠"疫情期间,全国人民"众志成城,同心抗疫",某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元 件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量 (单位:件)与线下售价 (单位:元 件, 满足一次函数的关系,部分数据如下表:
(元 件) |
12 |
13 |
14 |
15 |
16 |
(件 |
1200 |
1100 |
1000 |
900 |
800 |
(1)求 与 的函数关系式;
(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.
如图,在 的边 上取一点 ,以 为圆心, 为半径画 , 与边 相切于点 , ,连接 交 于点 ,连接 ,并延长交线段 于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径;
(3)若 是 的中点,试探究 与 的数量关系并说明理由.