在"新冠"疫情期间,全国人民"众志成城,同心抗疫",某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元 件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量 (单位:件)与线下售价 (单位:元 件, 满足一次函数的关系,部分数据如下表:
(元 件) |
12 |
13 |
14 |
15 |
16 |
(件 |
1200 |
1100 |
1000 |
900 |
800 |
(1)求 与 的函数关系式;
(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.
已知直线,直线
与
、
分别交于
、
两点,点
是直线
上的一动点
(1)如图①,若动点在线段
之间运动(不与
、
两点重合),问在点
的运动过程中是否始终具有
这一相等关系?试说明理由;
(2)如图②,当动点在线段
之外且在的上方运动(不与
、
两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;
某人去水果批发市场采购苹果,他看中了A、B两家苹果。这两家苹果品质一样,零售价都为6元/千克,批发价各不相同。
A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠。
B家的规定如下表:
数量范围(千克) |
0~500 |
500以上~1500 |
1500以上~2500 |
2500以上 |
价格(元) |
零售价的95% |
零售价的85% |
零售价的75% |
零售价的70% |
【表格说明:批发价格分段计算,如:某人批发苹果2100千克,则总费用=6×95%×500+6×85%×1000+6×75%×(2100-1500)】
(1)如果他批发600千克苹果,则他在A 家批发需要 元,在B家批发需要 元;
(2)如果他批发x千克苹果(1500<x<2000),则他在A 家批发需要 元,在B家批发需要 元(用含x的代数式表示);
(3)现在他要批发1800千克苹果,你能帮助他选择在哪家批发更优惠吗?请说明理由。
出租车司机小李某天下午营运全是在东西走向的人民大道进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:
+15,-3,+14,-11,+10,-12,+4,-15,+16,-18.
(1)将最后一名乘客送到目的地时,小李距下午出车地点的距离是多少千米?
(2)若每千米耗油4升,这天下午共耗油多少升?
完成下面的解题过程,并在括号内填上依据。
如图,EF∥AD,∠1=∠2,∠BAC=85°.求∠AGD的度数.
解: ∵EF∥AD,
∴∠2=____()
又∵∠1=∠2
∴∠1=∠3
∴ ∥____()
∴∠BAC+____=180°
∵∠BAC=85°
∴∠AGD=95°
按下列要求画图,并解答问题:
(1)如图,在△ABC中,取BC边的中点D,过点D画射线AD;
(2)分别过点B,C画BE⊥AD于点E,CF⊥AD于点F;
(3)通过度量猜想BE和CF的数量关系是 ,位置关系是 .