在平面直角坐标系 xOy 中,已知抛物线 y = a x 2 + bx + c 与 x 轴交于 A ( - 1 , 0 ) , B ( 4 , 0 ) 两点,与 y 轴交于点 C ( 0 , - 2 ) .
(1)求抛物线的函数表达式;
(2)如图1,点 D 为第四象限抛物线上一点,连接 AD , BC 交于点 E ,连接 BD ,记 ΔBDE 的面积为 S 1 , ΔABE 的面积为 S 2 ,求 S 1 S 2 的最大值;
(3)如图2,连接 AC , BC ,过点 O 作直线 l / / BC ,点 P , Q 分别为直线 l 和抛物线上的点.试探究:在第一象限是否存在这样的点 P , Q ,使 ΔPQB ∽ ΔCAB .若存在,请求出所有符合条件的点 P 的坐标;若不存在,请说明理由.
分解因式: (1)3x(a﹣b)﹣2y(b﹣a) (2)﹣2a3+12a2﹣18a (3)4+12(x﹣y)+9(x﹣y)2 (4)4a2﹣9(b﹣1)2.
已知a+b=2,求代数式a2﹣b2+4b的值.
计算:
已知是方程组的解,试求的值。
小虎一家利用元旦三天驾车到某景点旅游,小汽车出发前油箱有油36L,匀速行驶若干小时后,油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示,根据图象回答下列问题: (1)求油箱余油量Q与行驶时间t之间的函数关系式; (2)如果出发地距景点200km,车速为80km/h,要到达景点,油箱中的油是否够用?请说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号