游客
题文

在平面直角坐标系 xOy 中,已知抛物线 y = a x 2 + bx + c x 轴交于 A ( - 1 , 0 ) B ( 4 , 0 ) 两点,与 y 轴交于点 C ( 0 , - 2 )

(1)求抛物线的函数表达式;

(2)如图1,点 D 为第四象限抛物线上一点,连接 AD BC 交于点 E ,连接 BD ,记 ΔBDE 的面积为 S 1 ΔABE 的面积为 S 2 ,求 S 1 S 2 的最大值;

(3)如图2,连接 AC BC ,过点 O 作直线 l / / BC ,点 P Q 分别为直线 l 和抛物线上的点.试探究:在第一象限是否存在这样的点 P Q ,使 ΔPQB ΔCAB .若存在,请求出所有符合条件的点 P 的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

分解因式:
(1)3x(a﹣b)﹣2y(b﹣a)
(2)﹣2a3+12a2﹣18a
(3)4+12(x﹣y)+9(x﹣y)2
(4)4a2﹣9(b﹣1)2

已知a+b=2,求代数式a2﹣b2+4b的值.

计算:

已知是方程组的解,试求的值。

小虎一家利用元旦三天驾车到某景点旅游,小汽车出发前油箱有油36L,匀速行驶若干小时后,油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示,根据图象回答下列问题:

(1)求油箱余油量Q与行驶时间t之间的函数关系式;
(2)如果出发地距景点200km,车速为80km/h,要到达景点,油箱中的油是否够用?请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号