通过锐角三角比的学习,我们已经知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长比与角的大小之间可以相互转化. 类似的我们可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad). 如下图在△ABC中,AB=AC,顶角A的正对记作sadA,这时. 我们容易知道一个角的大小与这个角的正对值也是互相唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad60º=_____________;sad90º=________________。
(2)对于,
的正对值sadA的取值范围是_____________。
(3)试求sad36º的值.
抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求此抛物线的解析式;
(2)抛物线上是否存在点P,使,若存在,求出P点坐标;若不存在,请说明理由.
已知二次函数y=ax2-4x+c的图象过点(-1,0)和点(2,-9).
(1)求该二次函数的解析式并写出其对称轴;
(2)已知点P(2,-2),连结OP,在x轴上找一点M,使△OPM是等腰三角形,请直接写出点M的坐标(不写求解过程).
如图,在中,以
为直径的
交
于点
,点
为
的中点,连结
交
于点
,且
.
(1)判断直线与⊙O的位置关系,并证明你的结论;
(2)若的半径为2,
,求
的长.
如图,已知二次函数y=x-4x+3的图象交x轴于A,B两点(点A在点B的左侧),交y轴于点C.
(1)求直线BC的解析式;
(2)点D是在直线BC下方的抛物线上的一个动点,当△BCD的面积最大时,求D点坐标.
如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.
(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;
(2)△AOC与△BOD关于直线对称,则对称轴是;
(3)△AOC绕原点O顺时针旋转可以得到△DOB,则旋转角度是度,在此旋转过程中,△AOC扫过的图形的面积是.