一种氢气燃料的汽车,质量为=2.0×103kg,发动机的额定输出功率为80kW,行驶在平直公路上时所受阻力恒为车重的0.1倍。若汽车从静止开始先匀加速启动,加速度的大小为
=1.0m/s2。达到额定输出功率后,汽车保持功率不变又加速行驶了800m,直到获得最大速度后才匀速行驶。g=10m/s2,试求:
(1)汽车的最大行驶速度;
(2)汽车从静止到获得最大行驶速度所用的总时间。
如图所示,两根足够长的平行金属导轨固定在倾角=300的斜面上,导轨电阻不计,间距L=0.4m。导轨所在空间被分成区域I和Ⅱ,两区域的边界与斜面的交线为MN,I中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁场感应度大小均为B=0.5T,在区域I中,将质量m1=0.1kg,电阻R1=0.1
的金属条ab放在导轨上,ab刚好不下滑。然后,在区域Ⅱ中将质量m2=0.4kg,电阻R2=0.1
的光滑导体棒cd置于导轨上,由静止开始下滑,cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与轨道垂直且两端与轨道保持良好接触,取g=10m/s2,问
(1)cd下滑的过程中,ab中的电流方向;
(2)ab将要向上滑动时,cd的速度v多大;
(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8m,此过程中ab上产生的热量Q是多少。
在光滑水平地面上有一凹槽A,中央放一小物块B,物块与左右两边槽壁的距离如图所示,L为1.0m。凹槽与物块的质量均为m,两者之间的动摩擦因素μ = 0.05。开始时物块静止,凹槽以v0 = 5m/s的初速度向右运动。设物块与凹槽壁碰撞过程中没有能量损失,且碰撞时间不计。G取10m/s2。求:
(1)物块与凹槽相对静止时的共同速度;
(2)从凹槽开始运动到两者相对静止,物块与右侧槽壁碰撞的次数;
(3)从凹槽开始运动到两者相对静止所经历的时间及该时间内凹槽运动的位移大小。
如图所示,O点为固定转轴,把一个长度为L的细绳上端固定在O点,细绳下端系一个质量为m的小摆球,当小摆球处于静止状态时恰好与平台的右端点B点接触,但无压力。一个质量为M的小钢球沿着光滑的平台自左向右运动到B点时与静止的小摆球m发生正碰,碰撞后摆球在绳的约束下作圆周运动,且恰好能够经过最高点A,而小钢球M做平抛运动落在水平地面上的C点。测得B、C两点间的水平距离DC=x,平台的高度为h,不计空气阻力,本地的重力加速度为g,请计算:
(1)碰撞后小钢球M做平抛运动的初速度大小;
(2)小球m在B点时碰撞后的速度;
(3)碰撞前小钢球M在平台上向右运动的速度大小。
如下图,半径R = 1.0m的四分之一圆弧形光滑轨道竖直放置,圆弧最低点B与长为L=0.5m的水平面BC相切于B点,BC离地面高h = 0.45m,C点与一倾角为θ = 37°的光滑斜面连接,质量m=1.0 kg的小滑块从圆弧上某点由静止释放,已知滑块与水平面间的动摩擦因数µ=0.1。(已知sin37°=0.6 cos37°="0.8," g取l0 m/s2)求:
(1)若小滑块到达圆弧B点时对圆弧的压力刚好等于其重力的2倍,则小滑块应从圆弧上离地面多高处释放;
(2)若在C点放置一个质量M=2.0kg的小球,小滑块运动到C点与小球正碰后返回恰好停在B点,求小滑块与小球碰后瞬间小滑块的速度大小。
(3)小滑块与小球碰后小球将落在何处并求其在空中的飞行时间。
如图所示,水平地面和半圆轨道面均光滑,质量M=1kg的小车静止在地面上,小车上表面与R=0.24m的半圆轨道最低点P的切线相平。现有一质量m=2kg的滑块(可视为质点)以v0=6m/s的初速度滑上小车左端,二者共速时小车还未与墙壁碰撞,当小车与墙壁碰撞时即被粘在墙壁上,已知滑块与小车表面的滑动摩擦因数μ=0.2,g取10m/s2,求:
(1)滑块与小车共速时的速度及小车的最小长度;
(2)滑块m恰好从Q点离开圆弧轨道时小车的长度;
(3)讨论小车的长度L在什么范围,滑块能滑上P点且在圆轨道运动时不脱离圆轨道?