(本小题满分13分)为抗击金融风暴,某工贸系统决定对所属企业给予低息贷款的扶持,该系统先根据相关评分标准对各个企业进行了评估,并依据评估得分将这些企业分别评定为优秀、良好、合格、不合格4个等级,然后根据评估等级分配相应的低息贷款金额,其评估标准和贷款金额如下表:
评估得分 |
[50,60) |
[60,70) |
[70,80) |
[80,90] |
评定类型 |
不合格 |
合格 |
良好 |
优秀 |
贷款金额(万元) |
0 |
200 |
400 |
800 |
为了更好地掌控贷款总额,该系统随机抽查了所属部分企业的评估分数,得其频率分布直方图如下
(1)估计该系统所属企业评估得分的中位数及平均分;
(2)该系统要求各企业对照评分标准进行整改,若整改后优秀企业数量不变,不合格企业、合格企业、良好企业的数量依次成等差数列,系统所属企业获得贷款的均值(即数学期望)不低于410万元,那么整改后不合格企业占企业总数的百分比的最大值是多少?
(8分)已知函数.
(1)写出它的振幅、周期、频率和初相;
(2)求这个函数的单调递减区间;
(3)求出使这个函数取得最大值时,自变量的取值集合,并写出最大值。
(1)化简:
(2)求证:
(本小题满分12分)
已知椭圆的离心率为
,右焦点为
。斜率为1的直线
与椭圆
交于
两点,以
为底边作等腰三角形,顶点为
。
(Ⅰ)求椭圆的方程;
(Ⅱ)求的面积。
(本小题满分12分)
某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如表所示:
![]() 资源 |
甲产品 (每吨) |
乙产品 (每吨) |
资源限额 (每天) |
煤(t) |
9 |
4 |
360 |
电力(kw·h) |
4 |
5 |
200 |
劳力(个) |
3 |
10 |
300 |
利润(万元) |
7 |
12 |
问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?
(本小题满分12分)设计一副宣传画,要求画面积为4840,画面的宽与高的比为
,画面的上,下各留8
空白,左右各留5
空白,怎样确定画面的高于宽尺寸,能使宣传画所用纸张面积最小?