(本小题满分12分)节能减排是现代生活的追求。长沙地区某一天的温度(单位:)随时间
(单位:小时)的变化近似满足函数关系:
,
且早上8时的温度为,
.
(Ⅰ)求函数的解析式,并判断这一天的最高温度是多少?出现在何时?
(Ⅱ)某通宵营业的超市,为节约能源和开支,在环境温度超过时,才开启中央空调降温,否则关闭中央空调,问中央空调应在何时开启?何时关闭?
(本小题满分12分)如图,在四棱锥中,底面
是正方形,
底面
,
, 点
是
的中点,
,且交
于点
.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面⊥平面
;
(Ⅲ)求二面角的余弦值.
(本小题满分12分)某高中数学竞赛培训在某学段共开设有初等代数、平面几何、初等数论和微积分初步共四门课程,要求初等数论、平面几何都要合格,且初等代数和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格.现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同(见下表),且每一门课程是否合格相互独立.
(Ⅰ)求甲同学取得参加数学竞赛复赛的资格的概率;
(Ⅱ)记表示三位同学中取得参加数学竞赛复赛的资格的人数,求
的分布列及期望
.
已知函数,
.
(1)已知在
上是单调函数,求
的取值范围;
(2)已知满足
,且
,试比较
与
的大小;
(3)已知,是否存在正数
,使得关于
的方程
在
上有两个不相等的实数根?如果存在,求
满足的条件;如果不存在,说明理由.
已知椭圆C:的离心率为
,
是椭圆的两个焦点,
是椭圆上任意一点,且
的周长是
.
(1)求椭圆C的方程;
(2)设圆T:,过椭圆的上顶点作圆T的两条切线交椭圆于E、F两点,当圆心在
轴上移动且
时,求
的斜率的取值范围.