(本小题满分13分)已知圆C:
过点A(3,1),且过点P(4,4)的直线PF与圆C相切并和x轴的负半轴相交于点F.
(1)求切线PF的方程;
(2)若抛物线E的焦点为F,顶点在原点,求抛物线E的方程。
(3)若Q为抛物线E上的一个动点,求的取值范围.
已知函数.
(1)求证函数在区间
上存在唯一的极值点,并用二分法求函数取得极值时相应
的近似值(误差不超过
);(参考数据
,
,
)
(2)当时,若关于
的不等式
恒成立,试求实数
的取值范围.
设,在线段
上任取两点(不含两端点),将线段分成了三条线段.
(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率;
(2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率.
如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分线段PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB。
(1)求证:PC⊥平面BDE;
(2)若点Q是线段PA上任一点,判断BD、DQ的位置关系,并证明你的结论;
(3)若AB=2,求三棱锥B-CED的体积
已知函数的图像经过点A(0,0),B(3,7)及C
,
为数列
的前n项和
(I)求
(II)若数列满足
,求数列
的前n项和
在△ABC中,内角A,B,C所对边长分别为,
,
,
.
(1)求的最大值及
的取值范围;
(2)求函数的最大值和最小值.