选做题(本小题满分10分,请考生在第22、23、24三题中任选一题作答。如果多做,则按所做的第一题计分,作答时请在答题纸上所选题目的方框内打“√”。
22.选修4-1:几何证明选讲。
如图,是圆
的直径,
是弦,
的平分线
交圆
于点
,
,交
的延长线于点
,
交
于点
。
(1)求证:是圆
的切线;
(2)若,求
的值。
、如图,椭圆E经过点,对称轴为坐标轴,焦点F1,F2在
轴上,离心率
,
⑴求椭圆E的方程;
⑵求∠F1AF2的角平分线所在的直线的方程;
⑶在椭圆E上是否存在关于直线对称的相异两点?若存在,请找出;若不存在,说明理由。
如图所示,在正方体ABCD—A1B1C1D1中,棱长为,E为棱CC1上的动点.
⑴求证:A1E⊥BD;
⑵当E恰为棱CC1的中点时,求二面角A1—BD—E的大小;
⑶在⑵的条件下,求。
已知圆关于直线
对称,圆心在第二象限,半径为
。
⑴求圆C的方程;
⑵已知不过原点的直线与圆C相切,且
在
轴、
轴上的截距相等,求直线
的方程。
已知动点P到两定点距离之比为
。
⑴求动点P轨迹C的方程;
⑵若过点N的直线被曲线C截得的弦长为
,求直线
的方程。
已知直线经过点A
,B
,直线
经过点P
,Q
。
⑴若//
,求
的值;
⑵若⊥
,求
的值。