(本小题满分12分)某医院计划从10名医生(7男3女)中选5人组成医疗小组下乡巡诊.
(I)设所选5人中女医生的人数为,求
的分布列及数学期望;
(II)现从10名医生中的张强、李军、王刚、赵永4名男医生,李莉、孙萍2名女医生共6人中选一正二副3名组长,在张强被选中的情况下,求李莉也被选中的概率.
现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(1)求张同学至少取到1道乙类题的概率;
(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是,答对每道乙类题的概率都是
,且各题答对与否相互独立.用
表示张同学答对题的个数,求
的分布列和数学期望.
已知等差数列的前
项和为
,
,
,
(1)求数列的通项公式;
(2)若,求数列
的前100项和.
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
由散点图可知,销售量与价格
之间有较好的线性相关关系,其线性回归直线方程是;
(1)求的值;
(2)预计在今后的销售中,销量与单价仍然服从线性回归直线方程中的关系,且该产品的成本是每件4元,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入一成本)
已知公差不为0的等差数列满足
,
,
,
成等比数列.
(1)求数列的通项公式;(2)数列
满足
,求数列
的前
项和
;(Ⅲ)设
,若数列
是单调递减数列,求实数
的取值范围.
已知.
(1)当,
,
时,求
的解集;
(2)当,且当
时,
恒成立,求实数
的最小值.