(本小题满分14分)
已知f(x)=x2+bx+c为偶函数,曲线y=f(x)过点(2,5),g(x)=(x+a)f(x).
(1)求f(x)的解析式;
(2)若曲线y=g(x)有斜率为0的切线,求实数a的取值范围;
(3)若当x=1时,函数y=g(x)取得极值,确定y=g(x)的单调区间.
某学校为调查高二年级学生的身高情况,按随机抽样的方法抽取200名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有48人.(Ⅰ)在抽取的学生中,身高不超过165cm的男、女生各有多少人?并估计男生的平均身高。
(Ⅱ)在上述200名学生中,从身高在170~175cm之间的学生按男、女性别分层抽样的方法,抽出7人,从这7人中选派4人当旗手,求4人中至少有一名女生的概率.
已知,函数
(Ⅰ)若求
的值;
(Ⅱ)求函数的最大值和单调递增区间。
已知函数,其中
。
(1)若函数有极值
,求
的值;
(2)若函数在区间
上为增函数,求
的取值范围;
(3)证明:
已知椭圆的离心率为
,短轴的一个端点到右焦点的距离为
,直线
交椭圆于不同的两点
。
(1)求椭圆的方程;
(2)若坐标原点到直线
的距离为
,求
面积的最大值。
在,角
所对的边分别为
,向量
,且
。
(1)求的值;(2)若
,求
的值。