在直角坐标系xOy中,椭圆C1:的左、右焦点分别为F1、F2.F2也是抛物线C2:
的焦点,点M为C1与C2在第一象限的交点,且
.
(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足,直线l∥MN,且与C1交于A、B两点,若
·
=0,求直线l的方程.
某企业生产一种产品时,固定成本为5 000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为
(万元)(0≤
≤5),其中
是产品售出的数量(单位:百台)
(1)把利润表示为年产量的函数;(2)年产量多少时,企业所得的利润最大;
已知奇函数是定义在
上的减函数,若
,求实数
的取值范围。
(本小题满分12分)设p:函数f(x)=|x-a|在区间(4,+∞)上单调递增;q:loga2<1,如果“┐p”是真命题,q也是真命题,求实数a的取值范围.
(Ⅰ)计算:lg2+
-
÷
;
(Ⅱ)已知lga+lgb=21g(a-2b),求的值.
(14分)某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率
与每日生产产品件数
(
)间的关系为
,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%)
(Ⅰ)将日利润(元)表示成日产量
(件)的函数;
(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值