已知抛物线与双曲线
有公共焦点
,点
是曲线
在第一象限的交点,且
.
(1)求双曲线的方程;
(2)以双曲线的另一焦点
为圆心的圆
与直线
相切,圆
.过点
作互相垂直且分别与圆
、圆
相交的直线
和
,设
被圆
截得的弦长为
,
被圆
截得的弦长为
,问:
是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
(本小题满分10分)【选修4-1:几何证明选讲】
如图,已知直线PA与圆O相切于点A,经过点O的割线PBC交圆O于点B和点C,的平分线分别交AB,AC于点D和E.
(Ⅰ)证明:;
(Ⅱ)若,求
的值.
(本小题满分12分)已知函数,其中e是自然对数的底数.
(Ⅰ)证明:是R上的奇函数;
(Ⅱ)若关于x的不等式在
上恒成立,求实数m的取值范围;
(Ⅲ)已知正数a满足:存在,使得
成立,试比较
与
的大小,并证明你的结论.
(本小题满分12分)已知椭圆C:的右焦点为
,短轴的一个端点B到F的距离等于焦距.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F的直线与椭圆C交于不同的两点M、N,是否存在直线
,使得
与
的面积之比为1?若存在,求出直线
的方程;若不存在,说明理由.
(本小题满分12分)
某学校高一年级为了了解学生在一次数学考试中的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分是100分)作为样本(样本容量为a)进行统计,按照,
,
,
,
的分组作出如图甲所示的频率分布直方图和图乙所示的样本分数的茎叶图(图乙中仅列出了得分在
,
的数据).
(Ⅰ)求样本容量n和频率分布直方图中x,y的值;
(Ⅱ)在选取的样本中,从考试成绩是80分以上(含80分)的同学中随机抽取3名同学为其他同学作交流,设表示所抽取的3名同学中得分在
的学生个数,求
的分布列及其数学期望.
(本小题满分12分)如图,长方体中,
,
,点E是AB的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求二面角.