游客
题文

【原创】(本小题满分13分)已知函数,其中为自然对数的底数.
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)若对任意,不等式恒成立,求实数的取值范围;
(Ⅲ)试探究当时,方程解的个数,并说明理由.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知实数 a 0 ,设函数 f ( x ) = a ln x + x + 1 , x > 0 .

(1)当 a = - 3 4 时,求函数 f ( x ) 的单调区间;

(2)对任意 x [ 1 e 2 , + ) 均有 f ( x ) x 2 a , a 的取值范围.

注: e = 2 . 71828 . . . 为自然对数的底数.

如图,已知点 F ( 1 0 ) 为抛物线 y 2 = 2 px ( p > 0 ) 的焦点,过点 F 的直线交抛物线于 A , B 两点,点 C 在抛物线上,使得 ABC 的重心 G x 轴上,直线 AC x 轴于点 Q ,且 Q 在点 F 右侧.记 AFG , CQG 的面积为 S 1 , S 2 .

(1)求 p 的值及抛物线的准线方程;

(2)求 S 1 S 2 的最小值及此时点 G 的坐标.

设等差数列 { a n } 的前 n 项和为 S n a 3 = 4 a 4 = S 3 ,数列 { b n } 满足:对每 n N * , S n + b n , S n + 1 + b n , S n + 2 + b n 成等比数列.

(1)求数列 { a n } , { b n } 的通项公式;

(2)记 C n = a n 2 b n , n N * , 证明: C 1 + C 2 + + C n < 2 n , n N * .

如图,已知三棱柱 ABC - A 1 B 1 C 1 ,平面 A A 1 C 1 C 平面 ABC , ABC = 90 ° BAC = 30 ° , A 1 A = A 1 C = AC , E , F 分别是 AC , A 1 B 1 的中点.

(1)证明: EF BC

(2)求直线 EF 与平面 A 1 BC 所成角的余弦值.

设函数 f ( x ) = sin x , x R .

(1)已知 θ [ 0 , 2 π ) , 函数 f ( x + θ ) 是偶函数,求 θ 的值;

(2)求函数 y = [ f ( x + π 12 ) ] 2 + [ f ( x + π 4 ) ] 2 的值域.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号