【原创】(本小题满分12分)某班主任对全班50名学生学习积极性和参加社团活动情况进行调查,统计数据如表1所示
表1
|
参加社团活动 |
不参加社团活动 |
合计 |
学习积极性高 |
17 |
8 |
25 |
学习积极性一般 |
5 |
20 |
25 |
合计 |
22 |
28 |
50 |
(1)如果随机从该班抽查一名学生,抽到参加社团活动的学生的概率是多少?抽到不参加社团活动且学习积极性一般的学生的概率是多少?
(2)运用独立检验的思想方法分析:学生的学习积极性与参加社团活动情况是否有关系?并说明理由.
![]() |
0.05 |
0.01 |
0.001 |
![]() |
3.841 |
6.635 |
10.828 |
某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横的交叉点记忆三角形的顶点)处都种了一株相同品种的作物。根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:
X |
1 |
2 |
3 |
4 |
Y |
51 |
48 |
45 |
42 |
这里,两株作物“相近”是指它们之间的直线距离不超过1米。
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(2)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望。
·新课标理)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C
(1)求C的方程;
(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
·新课标理)平面直角坐标系xOy中,过椭圆M:右焦点的直线
交
于A,B两点,P为AB的中点,且OP的斜率为
.
(1)求M的方程;
(2)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形面积的最大值
·江西理)如图,椭圆经过点P(1.
),离心率e=
,直线l的方程为x=4.
(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为.问:是否存在常数λ,使得
?若存在,求λ的值;若不存在,说明理由.
已知A、B、C是椭圆W:上的三个点,O是坐标原点.
(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积.
(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.