如图,在△ABO中,已知点、B(﹣1,﹣1)、C(0,0),正比例函数y=﹣x图象是直线l,直线AC∥x轴交直线l与点C.
(1)C点的坐标为 (﹣3,3) ;
(2)以点O为旋转中心,将△ABO顺时针旋转角α(90°<α<180°),使得点B落在直线l上的对应点为B′,点A的对应点为A′,得到△A′OB′.
①∠α= 90° ;②画出△A′OB′.
(3)写出所有满足△DOC∽△AOB的点D的坐标.
如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且 ,连接OE延长与圆相交于点F,与BC相交于点C.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为6, ,求弦BD的长.
如图所示,一次函数 与反比例函数 的图象交于 两点.
(1)分别求出一次函数与反比例函数的表达式;
(2)过点B作 轴,垂足为点C,连接AC,求△ACB的面积.
八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.
类别 |
频数(人数) |
频率 |
小说 |
0.5 |
|
戏剧 |
4 |
|
散文 |
10 |
0.25 |
其他 |
6 |
|
合计 |
1 |
根据图表提供的信息,解答下列问题:
(1)八年级一班有多少名学生?
(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;
(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.
一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)
如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.
(1)求二次函数y=ax2+bx+4的表达式;
(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;
(3)连接OM,在(2)的结论下,求OM与AC的数量关系.