游客
题文

如图,在△ABO中,已知点、B(﹣1,﹣1)、C(0,0),正比例函数y=﹣x图象是直线l,直线AC∥x轴交直线l与点C.
(1)C点的坐标为 (﹣3,3) 
(2)以点O为旋转中心,将△ABO顺时针旋转角α(90°<α<180°),使得点B落在直线l上的对应点为B′,点A的对应点为A′,得到△A′OB′.
①∠α= 90° ;②画出△A′OB′.
(3)写出所有满足△DOC∽△AOB的点D的坐标.

科目 数学   题型 解答题   难度 中等
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且 DBC A ,连接OE延长与圆相交于点F,与BC相交于点C

(1)求证:BC是⊙O的切线;

(2)若⊙O的半径为6, BC 8 ,求弦BD的长.

如图所示,一次函数 y kx + b 与反比例函数 y m x 的图象交于 A 2 4 ), B (﹣ 4 n 两点.

(1)分别求出一次函数与反比例函数的表达式;

(2)过点B BC x 轴,垂足为点C,连接AC,求△ACB的面积.

八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.

类别

频数(人数)

频率

小说

0.5

戏剧

4

散文

10

0.25

其他

6

合计

1

根据图表提供的信息,解答下列问题:

(1)八年级一班有多少名学生?

(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;

(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.

一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)

如图,已知二次函数yax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A

(1)求二次函数yax2+bx+4的表达式;

(2)连接ACAB,若点N在线段BC上运动(不与点BC重合),过点NNMAC,交AB于点M,当△AMN面积最大时,求N点的坐标;

(3)连接OM,在(2)的结论下,求OMAC的数量关系.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号