游客
题文

如图,一次函数的图象与反比例函数y1=  ( x<0)的图象相交于A点,与y轴、x轴分别相交于BC两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.
(1)   求一次函数的解析式;
(2)   设函数y2= (x>0)的图象与y1=  (x<0)的图象关于y轴对称.在y2= (x>0)的图象上取一点PP点的横坐标大于2),过PPQx轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

 

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图1,正方形ABCD和正方形QMNP,∠M =∠B,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E.
求证:ME = MF.
如图2,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME与线段MF的关系,并加以证明.
如图3,若将原题中的“正方形”改为“矩形”,且AB = mBC,其他条件不变,探索线段ME与线段MF的关系,并说明理由.
根据前面的探索和图4,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题;若不能,请说明理由

如图已知AB是的切线,切点为于点过点于点

求证:
的半径为4,求CD的长;
求阴影部分的面积。

如图,已知抛物线C1的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
求P点坐标及a的值;
如图(1),

抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;
如图(2),

点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.

已知:在△ABC中AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.
如图1,当∠ABC=45°时,求证:AE=MD;

如图2,当∠ABC=60°时,则线段AE、MD之间的数量关系为:

在(2)的条件下延长BM到P,使MP=BM,连接CP,若AB=7,AE=,求tan∠ACP的值.

某州有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.
天后每千克该野生菌的市场价格为元,试写出之间的函数关系式
若存放天后,将这批野生菌一次性出售,设这批野生菌的销售总额为元,试写出之间的函数关系式.
李经理将这批野生茵存放多少天后出售可获得最大利润元?
(利润=销售总额-收购成本-各种费用).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号