如图,一次函数的图象与反比例函数y1= ( x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.
(1) 求一次函数的解析式;
(2) 设函数y2= (x>0)的图象与y1=
(x<0)的图象关于y轴对称.在y2=
(x>0)的图象上取一点P(P点的横坐标大于2),过P作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.
![]() |
如图1,正方形ABCD和正方形QMNP,∠M =∠B,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E.求证:ME = MF.
如图2,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME与线段MF的关系,并加以证明.
如图3,若将原题中的“正方形”改为“矩形”,且AB = mBC,其他条件不变,探索线段ME与线段MF的关系,并说明理由.
根据前面的探索和图4,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题;若不能,请说明理由
如图已知AB是的切线,切点为
交
于点
过点
作
交
于点
求证:
;
若
的半径为4,求CD的长;
求阴影部分的面积。
如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
求P点坐标及a的值;
如图(1),
抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;如图(2),
点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.
已知:在△ABC中AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.如图1,当∠ABC=45°时,求证:AE=
MD;
如图2,当∠ABC=60°时,则线段AE、MD之间的数量关系为:。
在(2)的条件下延长BM到P,使MP=BM,连接CP,若AB=7,AE=
,求tan∠ACP的值.
某州有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.设
天后每千克该野生菌的市场价格为
元,试写出
与
之间的函数关系式
若存放
天后,将这批野生菌一次性出售,设这批野生菌的销售总额为
元,试写出
与
之间的函数关系式.
李经理将这批野生茵存放多少天后出售可获得最大利润
元?
(利润=销售总额-收购成本-各种费用).