在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋
转角为(0°<
<180°),得到△A1B1C.
(1)如图1,当AB∥CB1时,设A1B1与BC相交于点D.证明:△A1CD是等边三角形;
(2)如图2,连接AA1、BB1,设△ACA1和△BCB1的面积分别为S1、S2.求证:S1∶S2=1∶3;
(3)如图3,设AC的中点为E,A1B1的中点为P,AC=a,连接EP.当= °时,EP的长度最大,最大值为 .
如图所示,在△ABC,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E点,已知AB=10cm,求△DEB的周长。
如图,ABCD是菱形,对角线AC与BD相交于O,∠ACD=30°,BD=6.
(1)求证:△ABD是正三角形;
(2)求AC的长(结果可保留根号).
已知:如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AE⊥BD,CF⊥BD,垂足分别为E、F.
求证:四边形AECF是平行四边形.
如图,在正方形ABCD中,CE⊥DF.若CE=10cm,求DF的长.
如图,教师节来临之际,群群所在的班级准备向每位辛勤工作的教师献一束鲜花,每束由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花两种鲜花,同一种鲜花每支的价格相同,请你根据第一、二束鲜花提供的信息,求出第三束鲜花的价格.