游客
题文

(本小题满分12分)某工厂家具车间造AB型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张AB型桌子分别需要1 h和2 h,漆工油漆一张AB型桌子分别需要3 h和1 h;又知木工、漆工每天工作分别不得超过8 h和9 h,而工厂造一张AB型桌子分别获利润2千元和3千元,试问:工厂每天应生产AB型桌子各多少张,才能获得最大利润?

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=bcosA.
(1)求证:a=b
(2)若sinA=,求sin(C)的值.

已知函数f(x)=alnx++1.
(Ⅰ)当a=﹣时,求f(x)在区间[,e]上的最值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)当﹣1<a<0时,有f(x)>1+ln(﹣a)恒成立,求a的取值范围.

已知函数f(x)=ex﹣ax﹣1(a>0,e为自然对数的底数).
(1)求函数f(x)的最小值;
(2)若f(x)≥0对任意的x∈R恒成立,求实数a的值.

已知f(x)=xlnx,g(x)=x3+ax2﹣x+2.
(1)求函数f(x)的单调区间;
(2)对任意x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

已知命题p方程2x2+ax﹣a2=0在[﹣1,1]上有解;命题q:只有一个实数x0满足不等式x02+2ax0+2a≤0,若命题“p∨q”是假命题,求实数a的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号