某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240件,厂方计划由20个工人一天内加工完成,并要求每人只加工一种配件,根据下表提供的信息,解答下列问题:
配件种类 |
甲 |
乙 |
丙 |
每人可加工配件的数量(个) |
16 |
12 |
10 |
每个配件获利(元) |
6 |
8 |
5 |
(1)设加工甲种配件的人数为x,加工乙种配件的人数为y,求y与x之间的函数关系式
(2)如果加工每种配件的人数均不少于3人,那么加工配件的人数安排方案有几种?并写出每种安排方案
(3)要使此次加工配件的利润最大,应采用哪种方案?最大利润是多少?
如图的小方格都是边长为1个单位的正方形,按照下列要求作图.(不写作法,只作出图形即可)
(1)作△ABC关于直线EF的轴对称图形;
(2)将△ABC向右平移4个单位;
(3)作△ABC关于点O的中心对称图形.
先化简,再求值:其中
(1);(2)
计算:
(1)(2)
(3)(4)4-
-(2-
)+
阅读理解填空:
(1)如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.
证明:∵AB∥CD,
∴∠MEB=∠MFD( )
又∵∠1=∠2,
∴∠MEB-∠1=∠MFD-∠2,
即∠MEP=∠______
∴EP∥_____.( )
(2)如图,EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD.
解:∵EF∥AD,
∴∠2=()
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥()
∴∠BAC+=180 o()
∵∠BAC=70 o,
∴∠AGD=。
如图,与
是邻补角,OD、OE分别是
与
的平分线,试判断OD与OE的位置关系,并说明理由.