初中生对待学习的态度一直是教育工作者关注的问题之一.为此菏泽市教育局对我市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了 名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度;
(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?
如图1,在△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕顶点C顺时针旋转30°,得到△A′B′C.联结A′A、B′B,设△ACA′和△BCB′的面积分别为S△ACA′ 和S△BCB′.(1)直接写出S△ACA′ ︰S△BCB′ 的值;
(2)如图2,当旋转角为
(0°<
<180°)时,S△ACA′ 与S△BCB′ 的比值是否发生变化,若不变请证明;若改变,写出变化后的比值(可用含
的代数式表示).
如图,在三角形ABC中,以为直径作⊙O,交AC于点E,OD⊥AC于D,∠AOD=∠C.
(1)求证:BC为⊙O的切线;
(2)若
,求OD的长.
如图,抛物线与轴交于A(1,0),B(
,0)两点,与
轴交于点C(0,3).
(1)求此抛物线的解析式;
(2)在x轴上找一点D,使得以点A、C、D为顶点的三角形是直角三角形,求点D的坐标.
某超市按每袋20元的价格购进某种干果.销售过程中发现,每月销售量y(袋)与销售单价x(元)之间的关系可近似地看作一次函数:(
).
(1)当x=45元时,y=袋;当y=200袋时,x=元;
(2)设这种干果每月获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?
如图,河两岸a,b互相平行,C,D是河岸a上间隔40米的两根电线杆,某人在河岸b上的A处,测得∠DAE=45°,然后沿河岸走了30米到达B处,测得∠CBE=60°,求河的宽度(结果精确到1米,).