游客
题文

如图,小明在大楼30米高

(即PH=30米)的窗口P处进行观测,测得山
坡上A处的俯角为15°,山脚B处的俯角为
60°,已知该山坡的坡度i(即tan∠ABC)为1:
,点P、H、B、C、A在同一个平面上.点
H、B、C在同一条直线上,且PH⊥HC.
(1)山坡坡角(即∠ABC)的度数等于 ▲ 度;
(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形
登录免费查看答案和解析
相关试题

为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/时;当车流密度为20辆/千米时,车流速度为80千米/时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.
(1)求彩虹桥上车流密度为100辆/千米时的车流速度;
(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/时且小于60千米/时,应控制彩虹桥上的车流密度在什么范围内?
(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.

如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=

(1)求⊙O的半径OD;
(2)求证:AE是⊙O的切线;
(3)求图中两部分阴影面积的和.

今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:

(1)抽取的部分同学的人数是多少?
(2)补全直方图的空缺部分.
(3)若九年级有400名学生,估计该年级去打扫街道的人数.
(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.(用A表示“打扫街道”;用B表示“去敬老院服务”;用C表示“法制宣传”)

如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.

(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.
(3)若AD=3,AE=5,则菱形AECF的面积是多少?

如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号