如图1,Rt△ABC两直角边的边长为AC=1,BC=2.
(1)如图2,⊙O与Rt△ABC的边AB相切于点X,与边CB相切于点Y.请你在图2中作出并标明⊙O的圆心O;(用尺规作图,保留作图痕迹,不写作法和证明)
(2)P是这个Rt△ABC上和其内部的动点,以P为圆心的⊙P与Rt△ABC的两条边相切.设⊙P的面积为s,你认为能否确定s的最大值?若能,请你求出s的最大值;若不能,请你说明不能确定s的最大值的理由.
如图1,已知正比例函数和反比例函数的图象都经过点M(-2,),且P(
,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.
(1)写出正比例函数和反比例函数的关系式;
(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?若存在,请求出点Q的坐标,若不存在,请说明理由;
(3)如图2,当点Q在第一象限中的双曲线上运动时,作以 OP、OQ为邻边的平行四边形OPCQ,设点Q的横坐标为n,求平行四边形OPCQ周长(周长用n的代数式表示),并写出其最小值.
如图,在等腰梯形AECD中,AE∥DC,∠DAE=60°,点B是AE的中点,AC⊥CE.求证:四边形ABCD是菱形.
如图,已知反比例函数的图象经过点
,一次函数的图象过点C且与
轴、
轴分别交于点A、B,若OA=3,且AB=BC.
(1)求反比例函数的解析式;(2)求AC和OB的长.
如图所示,有一条等宽(AF=EC)的小路穿过矩形的草地ABCD,已知AB="60m," BC="84m," AE=100m.
(1)试判断这条小路(四边形AECF)的形状,并说明理由;
(2)求这条小路的的面积和对角线FE的长度.(精确到整数)
已知,如图,E、F分别为ΔABC的边BC、CA的中点,延长EF到D,使得DF=EF,连结DA,DC,AE.(1)求证:四边形ABED是平行四边形.(2)若AB=AC,试证明四边形AECD是矩形.