如图: PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.(Ⅰ)求三棱锥E-PAD的体积;(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF.
已知矩阵,A的一个特征值,属于λ的特征向量是,求矩阵A与其逆矩阵.
(理)如图,P—ABCD是正四棱锥,是正方体,其中 (1)求证:; (2)求平面PAD与平面所成的锐二面角的余弦值;
如图,三棱锥P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。 (I)求棱PB的长; (II)求二面角P—AB—C的大小。
已知函数. 求(1) 的定义域; (2)判断在其定义域上的奇偶性,并予以证明, (3)求的解集。
已知是各项为正数的等比数列,且a1=1,a2+a3=6, (1)求该数列的通项公式 (2)若,求该数列的前n项和
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号