(11·佛山)现在初中课本里所学习的概率计算问题只有以下类型:
第一类是可以列举有限个等可能发生的结果的概率计算问题(一步试验直接列举,两步以上的试验可以借助树状图或表格列举),比如掷一枚均匀硬币的试验;
第二类是用试验或者模拟试验的数据计算频率,并用频率估计概率的概率计算问题,比如掷图钉的试验;
解决概率计算问题,可以直接利用模型,也可以转化后再利用模型;
请解决以下问题
(1)如图,类似课本的一个寻宝游戏,若宝物随机藏在某一块砖下(图中每一块砖除颜色外完全相同),则宝物藏在阴影砖下的概率是多少?
(2)在中随机选取3个整数,若以这3个整数为边长构成三角形的情况如下表:
请你根据表中数据,估计构成钝角三角形的概率是多少?(精确到百分位)
(本小题满分10分)
已知甲、乙两种矿石中均含有金属A,其含量及每吨原料的购买单价如下表所示:
金属A含量 |
单价(万元/吨) |
|
甲矿石 |
5% |
2 5 |
乙矿石 |
8% |
6 |
已知用甲矿石提取每千克金属A要排放废气1吨,用乙矿石提取每千克金属A要排放废气0 5吨,若某厂要提取金属A20千克,并要求废气排放不超过16吨,问:该厂购买这两种原料的费用最少是多少万元?
(本小题满分10分)
有一学校为了解九年级学生某次体育测试成绩,现对这次体育测试成绩进行抽样调查,结果统计如下,其中扇形统计图中E组所在的扇形的圆心角为144°
被抽取的体育测试成绩频数分布表
组别 |
成绩 |
频数 |
A |
20<x≤24 |
2 |
B |
24<x≤28 |
3 |
C |
28<x≤32 |
5 |
D |
32<x≤36 |
b |
E |
36<x≤40 |
20 |
合计 |
a |
根据上面的图表提供的信息,回答下列问题:
(1)计算频数分布表中a与b的值;
(2)请估计该校九年级学生这次体育测试成绩的平均分(结果取整数)
(3)小敏测得扇形统计图的半径为5,将扇形统计图的A,B,C区域块剪下来,剩余部分卷成圆锥体(不算重合部分),则圆锥体的高为多少?
(本小题满分8分)某一空间图形的三视图如右图所示, 其中主视图:半径为1的半圆以及高为1的矩形; 左视图:半径为1的圆以及高为1的矩形; 俯视图:半径为1的圆 求此图形的体积
已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.
(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.
①求证:△OCP∽△PDA;
②若△OCP与△PDA的面积比为1:4,求边AB的长;
(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;
(3)如图2,在(1)的条件下,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.
二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.
(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;
(3)当△FPM是等边三角形时,求P点的坐标.