沿海开发公司准备投资开发、
两种新产品,通过市场调研发现:
(1)若单独投资种产品,则所获利润
(万元)与投资金额
(万元)之间满足正比例函数关系:
;
(2)若单独投资种产品,则所获利润
(万元)与投资金额
(万元)之间满足二次函数关系:
.
(3)根据公司信息部的报告,,
(万元)与投资金额
(万元)的部分对应值如下表所示:
![]() |
1 |
5 |
![]() |
0.8 |
4 |
![]() |
3.8 |
15 |
(1)填空:;
;
(2)若公司准备投资20万元同时开发、
两种新产品,设公司所获得的总利润为
(万元),试写出
与某种产品的投资金额
(万元)之间的函数关系式;
(3)请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?
科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):
温度![]() |
…… |
-4 |
-2 |
0 |
2 |
4 |
4.5 |
…… |
植物每天高度增长量![]() |
…… |
41 |
49 |
49 |
41 |
25 |
19.75 |
…… |
由这些数据,科学家推测出植物每天高度增长量是温度
的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.
(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;
(2)温度为多少时,这种植物每天高度的增长量最大?
(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过,那么实验室的温度
应该在哪个范围内选择?请直接写出结果.
有一座抛物线形拱桥,正常水位时桥下水面宽度为,拱顶距离水面
.
(1)在如图所示的直角坐标系中,求出该抛物线的解析式;
(2)设正常水位时桥下的水深为,为保证过往船只顺利航行,桥下水面的宽度不得小于
,求水深超过多少米时就会影响过往船只在桥下的顺利航行.
如图,抛物线与轴交于
、
两点,与
轴交
点,点
的坐标为
,点
的坐标为
,它的对称轴是直线
.
(1)求抛物线的解析式;
(2)是线段
上的任意一点,当
为等腰三角形时,求
点的坐标.
如图,已知二次函数的图象交
轴于
、
两点.
(1)求线段的长;
(2)在同一坐标系中画出直线,并写出当
在什么范围内时,一次函数的值大于二次函数的值.