游客
题文

解方程:

科目 数学   题型 解答题   难度 较易
知识点: 一元二次方程的最值
登录免费查看答案和解析
相关试题

如图,AB是⊙O的直径,E是⊙O上的一点,BE的度数为40°,过点O作OC∥BE交⊙O于点C,求∠BCO的度数。

先化简,再求值:,其中

计算:
(1)(2)

如图,在直角坐标系中,Rt△OAB和Rt△OCD的直角顶点A,C始终在轴的正半轴上,B,D在第一象限内,点B在直线OD上方,OC=CD,OD=2,M为OD的中点,AB与OD相交于E,当点B位置变化时,Rt△OAB的面积恒为.试解决下列问题:

(1)填空:点D坐标为
(2)设点B横坐标为,请把BD长表示成关于的函数关系式,并化简;
(3)等式BO=BD能否成立?为什么?
(4)设CM的延长线与AB相交于F,当△BDE为直角三角形时,判断四边形BDCF的形状(无需证明).

如图,在平面直角坐标系中,已知点A坐标为(2,4),直线轴相交于点B,连结OA,抛物线从点O沿OA方向平移,与直线交于点P,顶点M到A点时停止移动.

(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为,①用的代数式表示点P的坐标;②当为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在异于M的点Q,使△PQA的面积与△PMA的面积相等,若存在,请求出点Q的坐标;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号