(本小题满分8分)2011年6月4日,李娜获得法网公开赛的冠军,圆了中国人
的网球梦,也在国内掀起一股网球热。某市准备为青少年举行一次网球知识讲座,小明和妹
妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明
想到一个办法:他拿出一个装有质地、大小相同的个红球与
个白球的袋子,让爸爸摸
出一个球,如果摸出的是红球,妹妹去听讲座,如果摸出的是白球,小明去听讲座。
(1)爸爸说这个办法不公平,请你用概率的知识解释原因。
(2)若爸爸从袋中取出个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利,说明理由。
小红按某种规律写出4个方程:①x2+x+2=0;②x2+2x+3=0;③x2+3x+4=0;④x2+4x+5=0.
(1)上述四个方程根的情况如何?为什么?
(2)按此规律,请你写出一个两根都为整数的方程,并解这个方程.
阅读下面材料:
小明遇到这样一个问题:如图1,在边长为的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.
小明发现:分别延长QE,MF, NG,PH,交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)。请回答:
(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则这个新的正方形的边长为__________;
(2)求正方形MNPQ的面积.
(3)参考小明思考问题的方法,解决问题:
如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ,若,则AD的长为__________.
如图所示的一张矩形纸片(
),将纸片折叠一次,使点
与
重合,再展开,折痕
交
边于
,交
边于
,AC与EF交于点O,分别连结
和
.在线段
上是否存在一点
,使得2AE2=AC·AP?若存在,请说明点
的位置,并予以证明;若不存在,请说明理由.
如图1是安装在斜屋面上的太阳能热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求铁架垂直管CE的长(结果精确到0.01米).(说明:sin40°≈0.645,cos40°≈0.766,sin25°≈0.423,cos25°≈0.906,tan25°≈0.466。)
如图,AB是⊙O的直径,D为圆周上任一点,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.
(1)求证:;
(2)若,⊙O的半径为3,求BC的长.