(本题满分10分,每小题5分)
(1)(11·贺州)
(2)(11·贺州)先化简,再求值:(a+1) (a-1)+a (1-a),其中a=2012.
某水果批发商销售每箱进价为40元的苹果,市场调查发现若每箱以50元的价格销售,平均每天销售90箱,价格每提高10元,平均每天少销售5箱.
(1)求该批发商平均每天的销售利润 w(元)与销售价 x(元/箱)之间的函数关系式,当x为多少时,w有最大值,这个值是多少?
(2)若物价部门规定每箱售价不得高于90元,当每箱苹果的销售价为多少元时,可以获得3000元利润?
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=DB,连结AC,过点D作DE⊥AC于E.
(1)求证:AB=AC;
(2)求证:DE为⊙O的切线;
如图,正方形ABCD的边长是6,以正方形的一边BC为直径做半圆,过点A作AF切半圆于点F,交DC于点E,求四边形ABCE的面积。
在一个不透明的纸箱里装有红、黄两种颜色的小球,它们除颜色外完全相同,其中红球有3个,黄球有1个。 现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:由小明与小亮同时从纸箱里随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.
如图,方格纸中的每个小方格都是边长为1个单位的正方形,建立如图所示的平面直角坐标系,△ABC的顶点均在格点上,点B的坐标为(1,0)
①画出将△ABC绕原点O按顺时针旋转90°所得的△A1B1C1,并写出C1点的坐标是;
②求出点C在此过程中经过的路径长度(结果保留π).