游客
题文

(11·天水)已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,
DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

先化简,再求值:x(x-1)+2x(x+1)-(3x-1)(2x-5),其中x=2.

解方程组:
(1)
(2)

如图1,已知有一张三角形纸片ABC的一边AB=10,若D为AB边上的点,过点D作DE∥BC交AC于点E,分别过点D、E作DF⊥BC于F,EG⊥BC于G,把三角形纸片ABC分别沿DE、DF、EG按图1方式折叠,点A、B、C分别落在A′、B′、C′处.若点A′、B′、C′在矩形DFGE内或者其边上,且互不重合,此时我们称△A′B′C′(即图中阴影部分)为“重叠三角形”.
实践探究:
(1)当AD=4时,
①若∠A=90°,AB=AC,请在图2中画出“重叠三角形”,S△A′B′C′=
②若AB=AC,BC=12,如图3,S△A′B′C′=
③若∠B=30°,∠C=45°,如图4,S△A′B′C′= .
(2)若△ABC为等边三角形(如图5),AD=m,且重叠三角形A′B′C′存在,试用含m的代数式表示重叠三角形A′B′C′ 的面积,并写出m的取值范围.

如图1,在平面直角坐标系中,点A、C分别在y轴和x轴上,AB∥x轴,sinC=,点P从O点出发,沿边OA、AB、BC匀速运动,点Q从点C出发,以1cm/s的速度沿边CO匀速运动。点P与点Q同时出发,其中一点到达终点,另一点也随之停止运动.设点P运动的时间为t(s),△CPQ的面积为S(cm2), 已知S与t之间的函数关系如图2中曲线段OE、线段EF与曲线段FG给出.
(1)点P的运动速度为cm/s, 点B、C的坐标分别为
(2)求曲线FG段的函数解析式;
(3)当t为何值时,△CPQ的面积是四边形OABC的面积的

某84消毒液工厂,去年五月份以前,每天的产量与销售量均为500箱,进入五月份后,每天的产量保持不变,市场需求量不断增加.如图是五月前后一段时期库存量(箱)与生产时间(月份)之间的函数图象.(五月份以30天计算)
(1)该厂月份开始出现供不应求的现象,五月份的平均日销售量为箱?
(2)为满足市场需求,该厂打算在投资不超过220万元的情况下,购买8台新设备,使扩大生产规模后的日产量不低于五月份的平均日销售量.现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:

型号
A
B
价格(万元/台)
28
25
日产量(箱/台)
50
40


请设计一种购买设备的方案,使得日产量最大;
(3)在(2)的条件下(市场日平均需求量与5月相同),若安装设备需5天(6月6日新设备开始生产),指出何时开始该厂有库存?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号