(11·丹东)(本题10分)某学校为了解学生每周在饮料方面的花费情况进行了抽样调查,调查结果制成了条形统计图和扇形统计图.请你结合图中信息完成下列问题:
(1)补全条形图.
(2)本次抽样调查了多少名学生?
(3)请求出抽样调查的数据的平均数,并直接写出中位数和人数.
(4)扇形统计图中,花费20元的人数所在扇形圆心角度数是多少度?
阅读下列材料:
我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+Bx+C=0的距离(d)计算公式是:d= .
例:求点P(1,2)到直线y= x-
的距离d时,先将y=
x-
化为5x-12y-2=0,再由上述距离公式求得d=
=
.
解答下列问题:
如图2,已知直线y=-x-4与x轴交于点A,与y轴交于点B,抛物线y=x2-4x+5上的一点M(3,2).
(1)求点M到直线AB的距离.
(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.
如图,已知菱形ABCD中,∠ABC=60°,点P是对称线AC上的一点,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=60°。求证:∠APE=∠CFP。
已知,点A、B、C在⊙O上,OC⊥AB,∠AOC=40°,点D⊙O上的动点(与点B、C不重合)是则∠BDC的度数是 。
已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.如图,当点D在边CB的延长线上时,证明AC=CD﹣CF。
对非负实数x“四舍五入”到个位的值记为
即:当n为非负整数时,如果
如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…
试解决下列问题:
(1)填空:①= (
为圆周率);
②如果的取值范围为 ;
(2)①当;
②举例说明不恒成立;
(3)求满足的值;
(4)设n为常数,且为正整数,函数范围内取值时,函数值y为整数的个数记为
的个数记为b.求证: