(本小题满分12分)为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲乙两种消毒液共100瓶,其中甲种消毒液6元/瓶,乙种消毒液9元/瓶。
(1)如果购买这两种消毒液共用780元,求四甲乙两种消毒液各购买了多少瓶?
(2)该校准备在购买这两种消毒液(不包括已购买的100瓶)使已种瓶数是甲种瓶数的2倍,且所需费用不超过1200元(不包括780元)求甲种消毒液最多能再购买多少瓶?
如图,已知直线 .
(1)当反比例函数 的图象与直线 在第一象限内至少有一个交点时,求 的取值范围.
(2)若反比例函数 的图象与直线 在第一象限内相交于点 , 、 , ,当 时,求 的值,并根据图象写出此时关于 的不等式 的解集.
如图,点 、 分别是等边 边 、 上的动点(端点除外),点 、点 以相同的速度,同时从点 、点 出发.
(1)如图1,连接 、 .求证: ;
(2)如图1,当点 、 分别在 、 边上运动时, 、 相交于点 , 的大小是否变化?若变化,请说明理由;若不变,求出它的度数;
(3)如图2,当点 、 在 、 的延长线上运动时,直线 、 相交于 , 的大小是否变化?若变化,请说明理由;若不变,求出它的度数.
如图,矩形 中, , , 是 上一点,且 , 是 上一动点,若将 沿 对折后,点 落在点 处,则点 到点 的最短距离为 .
若不等式组 恰有四个整数解,则 的取值范围是 .
如图, 是半圆 的直径, 是半圆上的一点, 平分 交半圆于点 ,过点 作 与 的延长线交于点 .
(1)求证: 是半圆的切线;
(2)若 , ,求半圆的直径.