某市为了争创“全国文明城市”,市文明委组织了精神文明建设知识竞赛。统计局调查队随机抽取了甲、乙两队中各6名组员的成绩,得分情况如下表所示:
甲组 |
84 |
85 |
87 |
88 |
88 |
90 |
乙组 |
82 |
86 |
87 |
88 |
89 |
90 |
(1) 根据表中的数据,哪个组对精神文明建设知识的掌握更为稳定?
(2) 用简单随机抽样方法从乙组6名成员中抽取两名,他们的得分情况组成一个样本,求抽
出的两名成员的分数差值至少是4分的概率。
(本小题满分13分)已知直四棱柱ABCD—A1B1C1D1的
底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,
M为线段AC1的中点.(1)求证:直线MF∥平面ABCD;
(2)求证:平面AFC1⊥平面ACC1A1;
(3)求平面AFC1与与平面ABCD所成二面角的大小.
设
个不全相等的正数
依次围成一个圆圈。
(Ⅰ)若
,且
是公差为
的等差数列,而
是公比为
的等比数列;数列
的前
项和
满足:
,求通项
;
(Ⅱ)若每个数
是其左右相邻两数平方的等比中项,求证:
。
已知以原点
为中心的椭圆的一条准线方程为
,离心率
,
是椭圆上的动点.
(Ⅰ)若
的坐标分别是
,求
的最大值;
(Ⅱ)如图,点
的坐标为
,
是圆
上的点,
是点
在
轴上的射影,点
满足条件:
,求线段
的中点
的轨迹方程.
如图,在四棱锥 中, 且 ;平面 平面 , ; 为 的中点, 。求:
(Ⅰ)点
到平面
的距离;
(Ⅱ)二面角
的大小。
如图,已知矩形ABCD,M,N分别是AD,BC的中点,且AM=AB,将矩形沿MN折成直二面角,若P点是线段DN上一动点,求P到BM距离的最小值。