若函数为定义域
上的单调函数,且存在区间
(其中
,使得当
时,
的取值范围恰为
,则称函数
是
上的正函数,区间
叫做函数的等域区间.
已知是
上的正函数,求
的等域区间;
试探求是否存在,使得函数
是
上的正函数?若存在,请求出实数
的取值范围;若不存在,请说明理由.
本题共有2个小题,第1小题满分6分,第2小题满分8分.
在长方体中,
,过
、
、
三点的平面截去长方体的一个角后,得到如图所示的几何体
,且这个几何体的体积为
.
(1)求棱的长;
(2)若的中点为
,求异面直线
与
所成角的大小(结果用反三角函数值表示).
已知关于的实系数一元二次方程
有两个虚根
,
,且
(
为虚数单位),
,求实数
的值.
等差数列中,第2、3、7项成等比数列,求公比q.
甲乙两射击运动员分别对同一目标各射击一次,甲射中的概率为,乙射中的概率为
.求:(1)两人都射中的概率;(2)两人中恰有一人射中的概率;(3)两人中至少有一人射中的概率;(4)两人中至多有一人射中的概率.
甲乙独立地对同一目标各射击一次,其命中率分别为和
,现已知目标被命中,则它是甲命中的概率是多少?