游客
题文

已知数列满足递推关系,,又
(1)当时,求证数列为等比数列;
(2)当在什么范围内取值时,能使数列满足不等式恒成立?
(3)当时,证明:.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,四棱锥的底面为矩形,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面

已知向量,其中的内角.
(Ⅰ)求角的大小;
(Ⅱ)若,且,求的长.

为实数,我们称为有序实数对.类似地,设为集合,我们称为有序三元组.如果集合满足,且,则我们称有序三元组为最小相交(表示集合中的元素的个数).
(Ⅰ)请写出一个最小相交的有序三元组,并说明理由;
(Ⅱ)由集合的子集构成的所有有序三元组中,令为最小相交的有序三元组的个数,求的值.

在平面直角坐标系中,已知曲线上任意一点到点的距离与到直线的距离相等.
(Ⅰ)求曲线的方程;
(Ⅱ)设轴上的两点,过点分别作轴的垂线,与曲线分别交于点,直线与x轴交于点,这样就称确定了.同样,可由确定了.现已知,求的值.

设实数满足,求证:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号