检测部门决定对某市学校教室的空气质量进行检测,空气质量分为A、B、C三级.
每间教室的检测方式如下:分别在同一天的上、下午各进行一次检测,若两次检测中有C级或两次都是B级,则该教室的空气质量不合格. 设各教室的空气质量相互独立,且每次检测的结果也相互独立. 根据多次抽检结果,一间教室一次检测空气质量为A、B、C三级的频率依次为,
,
.
(1) 在该市的教室中任取一间,估计该间教室空气质量合格的概率;
(2) 如果对该市某中学的4间教室进行检测,记在上午检测空气质量为A级的教室间数为X,并以空气质量为A级的频率作为空气质量为A级的概率,求X的分布列及期望值.
在等差数列{an}中,Sn为其前n项和,且a5=9,S3=9.
(Ⅰ)求数列{an}的通项an;
(Ⅱ)若数列{}的前n项和为Tn,求2Tn≥
的最小正整数n的值.
已知的顶点
,
边上的中线
所在的直线方程为
,
边上的高
所在直线的方程为
。
(1)求的顶点
、
的坐标;
(2)若圆经过不同的三点
、
、
,且斜率为
的直线与圆
相切于点
,求圆
的方程;
(3)问圆是否存在斜率为
的直线
,使
被圆
截得的弦为
,以
为直径的圆经过原点.若存在,写出直线
的方程;若不存在,说明理由。
设命题:方程
无实数根;命题
:函数
的值域是
.如果命题
为真命题,
为假命题,求实数
的取值范围。
为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有1000名学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成的频率分布表和频数分布条形图,解答下列问题:
(1)求频率分布表中的,
值,并补全频数条形图;
(2)根据频数条形图估计该样本的中位数是多少?
(3)若成绩在65.5~85.5分的学生为三等奖,问该校获得三等奖的学生约为多少人?
自点发出的光线
射到
轴上,被
轴反射,其反射光线所在直线与圆
相切,求光线
所在直线的方程。