先化简,再求值:,其中
.
(12分)
如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.,
B(-3,O),C(
,O).
(1)求⊙M的半径;.
(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.
(3)在(2)的条件下求AF的长.
(10分)
如图,等边三角形ABC和等边三角形DEC,CE和AC重合,CE=AB,
(1)求证:AD=BE;
(2)若CE绕点C顺时针旋转30度,连BD交AC于点G,取AB的中点F连FG,求证:BE=2FG;
(3)在(2)的条件下AB=2,则AG= ______.(直接写出结果)
(10分)
端午节吃粽子是中华民族的传统习俗,今年某商场销售甲厂家的高档、中档、低档三个品种及乙厂家的精装、简装两个品种的盒装粽子.现需要在甲、乙两个厂家中各选购一个品种.
(1)写出所有选购方案(利用树状图或列表方法求选购方案);
(2)如果(1)中各种选购方案被选中的可能性相同,那么甲厂家的高档粽子被选中的概率是多少?
(3)现某中学准备购买两个品种的粽子共32盒(价格如下表所示),发给学校的“留守儿童”,让他们过一个愉快的端午节,其中指定购买了甲厂家的高档粽子,再从乙厂家购买一个品种.若恰好用了1200元,请问购买了甲厂家的高档粽子多少盒?
品种 |
高档 |
中档 |
低档 |
精装 |
简装 |
价格(元/盒) |
60 |
40 |
25 |
50 |
20 |
(8分)
如上右图,在Rt△ABC中,∠ B=90°,E为AB上一点,∠ C=∠BEO,O是BC上一点,以D为圆心,OB长为半径作⊙O,,AC是⊙O,的切线.
(1)求证:OE=OC;
(2)若BE=4,BC=8,求OE的长.
有一块长30m、宽20m的矩形田地,准备修筑同样宽的三条直路(如下左图),把田地分成四块,种植不同品种的蔬菜,并且种植蔬菜的面积为基地面积的 .求道路的宽度.