在直角坐标系中,动点
到两圆
的圆心
和
的距离的和等于
.
(Ⅰ) 求动点的轨迹方程;
(Ⅱ) 以动点的轨迹与
轴正半轴的交点C为直角顶点作此轨迹的内接等腰直角三角形ABC,试问:这样的等腰直角三角形是否存在?若存在,有几个?若不存在,请说明理由.
如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=45°,PD⊥平面ABCD,PD=AD=1,点E为AB上一点,且,点F为PD中点.
(Ⅰ)若,求证:直线AF
平面PEC ;
(Ⅱ)是否存在一个常数,使得平面PED⊥平面PAB,若存在,求出
的值;若不存在,说明理由,
在中,角
所对的边分别为
,已知
,
(1)求的大小;
(2)若,求
的取值范围.
(本小题满分10分)选修4-5:不等式选讲
设函数.
(1)解不等式;
(2)若对一切实数
均成立,求
的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程
已知曲线,直线
(t为参数).
(1)写出曲线C的参数方程,直线的普通方程;
(2)过曲线C上任意一点P作与夹角为30°的直线,交
于点A,求|PA|的最大值与最小值.
如图,内接于圆
,
平分
交圆
于点
,过点
作圆
的切线交直线
于点
.
(1)求证:;
(2)求证:.