(11·贵港)
如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.
(1)求证:四边形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.
如图,线段OD的一个端点O在直线a上,以OD为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能画多少个?(并用直尺与圆规画出相应的等腰三角形)
如图,∠1=100°,∠2=100°,∠3=120°,填空:
∵∠1=∠2=100°(已知)
∴ _______ ∥ _______ (内错角相等,两直线平行)
∴∠ ______ =∠ _____ (两直线平行,同位角相等)
又∵∠3=120°(已知)
∴∠4= _____ 度.
如图①所示,已知、
为直线
上两点,点
为直线
上方一动点,连接
、
,分别以
、
为边向
外作正方形
和正方形
,过点
作
于点
,过点
作
于点
.
(1)如图②,当点恰好在直线
上时(此时
与
重合),试说明
;
(2)在图①中,当、
两点都在直线
的上方时,试探求三条线段
、
、
之间的数量关系,并说明理由;
(3)如图③,当点在直线
的下方时,请直接写出三条线段
、
、
之间的数量关系.(不需要证明)
(1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.
(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°, EF=4.求GH的长.
(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4. 直接写出下列两题的答案:
①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;
②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).
如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.
(1)求证:四边形ABCD是平行四边形;
(2)若AB=3cm,BC=5cm,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△ABP为等腰三角形?