(12分)已知函数
(1)写出函数的单调递减区间;
(2)设,
的最小值是
,最大值是
,求实数
的值
先后掷两颗均匀的骰子,问
(1)至少有一颗是6点的概率是多少?
(2)当第一颗骰子的点数为3或6时,求两颗骰子的点数之和大于8的概率.
已知是函数
的两个极值点.
(1)若,
,求函数
的解析式;
(2)若,求实数
的最大值;
(3)设函数,若
,且
,求函数
在
内的最小值.(用
表示)
已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴,垂足为T,与抛物线交于不同的两点P、Q且
.
(1)求点T的横坐标;
(2)若以F1,F2为焦点的椭圆C过点.
①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,求的取值范围.
“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度
(单位:尾/立方米)的函数.当
不超过4(尾/立方米)时,
的值为
(千克/年);当
时,
是
的一次函数;当
达到
(尾/立方米)时,因缺氧等原因,
的值为
(千克/年).
(1)当时,求函数
的表达式;
(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)
可以达到最大,并求出最大值.
已知圆,直线
与圆
相交于
两点,且A点在第一象限.
(1)求;
(2)设(
)是圆
上的一个动点,点
关于原点的对称点为
,点
关于
轴的对称点为
,如果直线
与
轴分别交于
和
.问
是否为定值?若是,求出定值,若不是,说明理由.