已知圆,直线
与圆
相交于
两点,且A点在第一象限.
(1)求;
(2)设(
)是圆
上的一个动点,点
关于原点的对称点为
,点
关于
轴的对称点为
,如果直线
与
轴分别交于
和
.问
是否为定值?若是,求出定值,若不是,说明理由.
(本小题满分12分)某饮料公司招聘了一名员工,现对其进行一项测试,以使确定工资级别,公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料,若4杯都选对,则月工资定为3500元,若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,令X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.
(1)求X的分布列;
(2)求此员工月工资的期望.
(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值.
(本小题满分12分)已知等比数列中,
,公比
.
(I)为
的前n项和,证明:
(II)设,
求数列的通项公式
(本小题满分10分)选修4-5:不等式选讲
设函数,其中
.
(I)当a=1时,求不等式的解集.
(II)若不等式的解集为{x|
,求a的值.
(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线的参数方程为
为参数),M为
上的动点,P点满足
,点P的轨迹为曲线
.
(I)求的方程;
(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与
的异于极点的交点为A,与
的异于极点的交点为B,求|AB|.