(本小题满分14分)
某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取
球.获奖规则如下:依次取到标有“生”“意”“兴”
“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖.
(Ⅰ)求分别获得一、二、三等奖的概率;(Ⅱ)设摸球次数为
,求
的分布列和数学期望.
已知满足
,求函数
的最大值和最小值
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中
是仪器的月产量
(1)将利润表示为月产量
的函数
(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)
已知函数是定义在R上的奇函数,当
时,
(1)求的解析式
(2)解关于的不等式
(10分)已知集合,集合
,集合
(1)求
(2)若,求实数
的取值范围;
(14分)已知函数
(1) 当a= -1时,求函数的最大值和最小值;
(2) 求实数a的取值范围,使y=f(x)在区间上是单调函数
(3) 求函数f(x)的最小值g(a),并求g(a)的最大值.