已知函数,设
。
(Ⅰ)求F(x)的单调区间;
(Ⅱ)若以)图象上任意一点
为切点的切线的斜率
恒
成立,求实数的最小值。
(Ⅲ)是否存在实数,使得函数
的图象与
的图象恰
好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由。来
(本小题满分12分)现有分别写有数字1,2,3,4,5的5张白色卡片、5张黄色卡片、5张红色卡片。每次试验抽一张卡片,并定义随机变量如下:若是白色,则
;若是黄色,则
;若是红色,则
;若卡片数字是
,则
(1)求概率
(2)求数字期望与数字方差
(本小题满分12分)上海世博会举办时间为2010年5月1日~10月31日。福建馆以“海西”为参博核心元素,主题为“潮涌海西,魅力福建”。福建馆招募了60名志愿者,某高校有l3人入选,其中5人为中英文讲解员,8人为迎宾礼仪,它们来自该校的5所所学院(这5所学院编号为1~5号),人员分布如图所示。若从这13名入选者中随机抽取3人。
(1)求这3人所在学院的编号恰好成等比数列的概率;
(2)求这3人中中英文讲解员人数的分布列及数学期望。
(本小题满分12分)带有编号的五个球
(1)全部投入4个不同的盒子里,有多少种不同的方法?
(2)放进4个不同的盒子里,每盒一个,有多少种不同的方法?
(3)将其中的4个球投入4个盒子里的一个(另一球不投入),有多少种不同的方法?
(4)全部投入4个不同的盒子里,没有空盒,有多少种不同的放法?
(本小题满分12分)已知二阶矩阵有特征值
及对应的一个特征向量
,并且矩阵
对应的变换将点(-1,2)变换成(-2,4).
(1)求矩阵
(2)求矩阵的另一个特征值及对应的一个特征向量
的坐标之间关系
(3)求直线:
在矩阵
的作用下的直线
的方程
(本小题满分12分)已知的第五项的二项式系数与第三项的二项式系数的比是14:3,求展开式中的常数项.