(本小题满分12分)
已知函数
(1)若,求曲线
在点
处的切线方程;
(2)若函数在其定义域内为增函数,求
的取值范围;
(3)在(2)的条件下,设函数,若在
上至少存在一点
,使得
成立,求实数
的取值范围.
求双曲线的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。
已知函数
(1)、判断函数的奇偶性,并给予证明
(2)若函数的图象有且仅有一个公共点,求实数m的取值范围
、如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SD=1,SB=.
(I)求证BCSC; (II)求平
面SBC与平面ABCD所成二面角的大小;
(III)设棱SA的中点为M,求异面直线DM与SB所成角的大小
如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求证:平面A B1D1∥平面EFG;
(2)求与平面
所成角的正切值
求倾斜角是45°,并且与原点的距离是5的直线的方程.