某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为
,
(
>
),且不同课程是否取得优秀成绩相互独立。记ξ为该生取得优秀成绩的课程数,其分布列为
ξ |
0 |
1 |
2 |
3 |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;
(Ⅱ)求,
的值;
(Ⅲ)求数学期望ξ。
设,
,
(1)当时,若
求。
(2)当时,若
展开
式中
的系数是20,求
的值。
(3)展开式中
的系数是19,当
,
变化时,求
系数的最小值。
已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人.
(1)求此人患色盲的概率;
(2)如果此人是色盲,求此人是男人的概率.(以上各问结果写成最简分式形式)
用0,1,2,3,4,5这六个数字:
(1)能组成多少个无重复数字的四位偶数?
(2)能组成多少个无重复数字且为5的倍数的五位数?
(3)能组成多少个无重复数字且比1325大的四位数?(以上各问均用数字作答)
为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00—10:00间各自的点击量,得如右所示的统计图,根据统计图:
(1)甲、乙两个网站点击量的极差分别是多少?
(2)甲网站点击量在[10,40]间的频率是多少?
(3)甲、乙两个网站哪个更受欢迎?并说明理由。
设函数,其中
.
(1)若,求
在
的最小值;
(2)如果在定义域内既有极大值又有极小值,求实数
的取值范围;
(3)『附加题』是否存在最小的正整数,使得当
时,不等式
恒成立.