某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为
,
(
>
),且不同课程是否取得优秀成绩相互独立。记ξ为该生取得优秀成绩的课程数,其分布列为
ξ |
0 |
1 |
2 |
3 |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;
(Ⅱ)求,
的值;
(Ⅲ)求数学期望ξ。
某工厂有一批货物由海上从甲地运往乙地,已知轮船的最大航行速度为60海里/小时,甲地至乙地之间的海上航行距离为600海里,每小时的运输成本由燃料费和其他费用组成,轮船每小时的燃料费与轮船速度的平方成正比,比例系数为0.5,其余费用为每小时1250元。
(1)把全程运输成本(元)表示为速度
(海里/小时)的函数;
(2)为使全程运输成本最小,轮船应以多大速度行驶?
已知函数
在
上是单调递减函数,
方程
无实根,若“
或
”为真,“
且
”为假,求
的取值范围。
已知函数
(1)求函数在
上的最大值与最小值;
(2)若时,函数
的图像恒在直线
上方,求实数
的取值范围;
(3)证明:当时,
.
已知定点与分别在
轴、
轴上的动点
满足:
,动点
满足
.
(1)求动点的轨迹的方程;
(2)设过点任作一直线与点
的轨迹交于
两点,直线
与直线
分别交于点
(
为坐标原点);
(i)试判断直线与以
为直径的圆的位置关系;
(ii)探究是否为定值?并证明你的结论.
已知是
的导函数,
,且函数
的图象过点
.
(1)求函数的表达式;
(2)求函数的单调区间和极值.