(本小题14分)已知f(x)=(x∈R)在区间[-1,1]上是增函数,
(1)求实数a的值组成的集合A;
(2)设关于x的方程f(x)=的两个非零实根为x1、x2。试问:是否存在实数m,使得不等
式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
已知函数.
(Ⅰ)若曲线在
和
处的切线互相平行,求
的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意
,均存在
,使得
,求
的取值范围.
已知椭圆(
)的右焦点为
,离心率为
.
(Ⅰ)若,求椭圆的方程;
(Ⅱ)设直线与椭圆相交于
,
两点,
分别为线段
的中点. 若坐标原点
在以
为直径的圆上,且
,求
的取值范围
已知函数.
(Ⅰ)若点在角
的终边上,求
的值;
(Ⅱ)若,求
的值域.
已知数列,
满足
,其中
.
(Ⅰ)若,求数列
的通项公式;
(Ⅱ)若,且
.
(ⅰ)记,求证:数列
为等差数列;
(ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次. 求首项
应满足的条件.
一个袋中装有个形状大小完全相同的小球,球的编号分别为
.
(Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;
(Ⅱ)若从袋中每次随机抽取个球,有放回的抽取3次,求恰有
次抽到
号球的概率;
(Ⅲ)若一次从袋中随机抽取个球,记球的最大编号为
,求随机变量
的分布列.