设函数,且
的图象的一个对称中心到最近的对称轴的距离为
,
(Ⅰ)求的值
(Ⅱ)求在区间
上的最大值和最小值.
如图所示,矩形中,
平面
,
,
为
上的点,
且平面
(1)求证:平面
;
(2)求证:平面
;
(3)求三棱锥的体积。
在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.
(1)求an和bn;
(2)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值
相等的概率.
已知向量,
,若函数
.
(1)求的最小正周期;
(2)若,求
的最大值及相应的
值;
(3)若,求
的单调递减区间.
在直角坐标系xOy中,直线l的方程为x﹣y+4=0,曲线C的参数方程为(α为参数)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
),判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
已知函数f(x)=-ax(a∈R,e为自然对数的底数).
(1)讨论函数f(x)的单调性;
(2)若a=1,函数g(x)=(x-m)f(x)-+x2+x在区间(0,+
)上为增函数,求整数m 的最大值.