已知椭圆、抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,从每条曲线上取两个点,将其坐标记录于下表中:
![]() |
3 |
![]() |
4 |
![]() |
![]() |
![]() |
0 |
![]() |
![]() |
(Ⅰ)求的标准方程;
(Ⅱ)请问是否存在直线满足条件:①过
的焦点
;②与
交不同两点
且满足
?若存在,求出直线
的方程;若不存在,说明理由.
(本小题满分10分)选修4-l:几何证明选讲在ABC中,D是AB边上一点,
ACD的外接圆交BC于点E,AB= 2BE
(1)求证:BC= 2BD;
(2)若CD平分ACB,且AC =2,EC =1,求BD的长
己知函数,其中
(1)求函数的单调区间;
(2)若直线x-y-l=0是曲线y=的切线,求实数
的值;
(3)设,求g(x)在区间
上的最大值(其中e为自然对数的底数)
设数列满足
(1)求数列的通项公式;
(2)令,求数列
的前n项和
如图,直三棱柱中,D,E分别是AB,
的中点
(1)证明:;
(2)设,求三棱锥
的体积
对某校高二年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(1)求出表中M,p及图中a的值;
(2)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率