如图所示,直空中有以O′为圆心,r为半径的圆柱形匀强磁场区域,圆的最下端与x轴相切于直角坐标原点O,圆的右端与平行于y轴的虚线MN相切,磁感应强度为B,方向垂直纸面向外,在虚线MN右侧x轴上方足够大的范围内有方向竖直向下、场强大小为E的匀强电场。现从坐标原点O向纸面不同方向发射速率相同的质子,质子在磁场中做匀速圆周运动的半径也为r,已知质子的电荷量为e,质量为m,不计质子的重力、质子对电
磁场的影响及质子间的相互作用力。求:
(1)质子进入磁场时的速度大小
(2)沿y轴正方向射入磁场的质子到达x轴所需的时间。
如图所示,第四象限内有互相正交的匀强电场E与匀强磁场B1,E的大小为1.5×103V/m,Bl大小为0.5T;第一象限的某个矩形区域内,有方向垂直纸面的匀强磁场B2,磁场的下边界与x轴重合。一质量m=1×10-14kg、电荷量q=2×l0-10C的带正电微粒以某一速度v沿与y轴正方向60°角从M点沿直线运动,经P点即进入处于第一象限内的磁场B2区域。一段时间后,小球经过y轴上的N点并与y轴正方向成60°角的方向飞出。M点的坐标为(0,-10),N点的坐标为(0,30),不计粒子重力,g取10m/s2。则求:(1)微粒运动速度v的大小;(2)匀强磁场B2的大小;(3)B2磁场区域的最小面积。
如图所示,某空间内存在着正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直于纸面向里。一段光滑绝缘的圆弧轨道AC固定在场中,圆弧所在平面与电场平行,圆弧的圆心为O,半径R=1.8m,连线OA在竖直方向上,圆弧所对应的圆心角
=37°。现有一质量m=3.6×10—4kg、电荷量q=9.0×10—4C的带正电的小
球(视为质点),以v0=4.0m/s的速度沿水平方向由A点射入圆弧轨道,一段时间后小球从C点离开圆弧轨道。小球离开圆弧轨道后在场中做匀速直线运动。不计空气阻力,sin37°=0.6,cos37°=0.8。求:(1)匀强电场场强E的大小;(2)小球刚射入圆弧轨道瞬间对轨道压力的大小。
一个半径r=0.10m的闭合导体圆环,圆环单位长度的电阻R0=1.0×10-2W×m-1。如图19甲所示,圆环所在区域存在着匀强磁场,磁场方向垂直圆环所在平面向外,磁感应强度大小随时间变化情况如图19乙所示。(1)分别求在0~0.3 s和0.3 s~0.5s 时间内圆环中感应电动势的大小;(2)分别求在0~0.3 s和0.3 s~0.5s 时间内圆环中感应电流的大小,并在图19丙中画出圆环中感应电流随时间变化的i-t图象(以线圈中逆时针电流为正,至少画出两个周期);(3)求在0~10s内圆环中产生的焦耳热。
质量为m、总电阻为R的导线做成边长为l的正方形线框MNPQ,并将其放在倾角为θ的平行绝缘导轨上,平行导轨的间距也为l,如图所示。线框与导轨之间是光滑的,在导轨的下端有一宽度为l(即ab=l)、磁感应强度为B的有界匀强磁场,磁场的边界aa′、bb′垂直于导轨,磁场的方向与线框平面垂直。某一次,把线框从静止状态释放,线框恰好能够匀速地穿过磁场区域。若当地的重力加速度为g,求:(1)线框通过磁场时的运动速度;(2)开始释放时,MN与bb′之间的距离;(3)线框在通过磁场的过程中所生的热。
如图所示,电阻,小灯泡
上标有“3V,1.5W",电源内阻
,滑动变阻器的最大阻值为R0(大小未知),当触头
滑动到最上端
时,安培表的读数为l A,小灯泡
恰好正常发光,求:
滑动变阻器的最大阻值R0
当触头
滑动到最下端
时,求电源的总功率及输出功率。