游客
题文

2006年5月3日进行抚仙湖水下考古,潜水员身背氧气瓶潜入湖底进行
考察,氧气瓶形状如图,其结构为一个圆柱和一个圆台的组合(设氧气瓶中氧气已充满,所
给尺寸是氧气瓶的内径尺寸),潜水员在潜入水下米的过程中,速度为米/分,每分钟
需氧量与速度平方成正比(当速度为1米/分时,每分钟需氧量为0.2L);在湖底工作时,
每分钟需氧量为0.4 L;返回水面时,速度也为米/分,每分钟需氧量为0.2 L,若下
潜与上浮时速度不能超过p米/分,试问潜水员在湖底最多能工作多少时间?(氧气瓶体积
计算精确到1 L,、p为常数,圆台的体积V=,其中h为高,r、R分
别为上、下底面半径.)

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

为了解某班学生喜爱打篮球是否与性别有关,对本班人进行了问卷调查得到了如下的列联表:


喜爱打篮球
不喜爱打篮球
合计
男生

5

女生
10


合计


50


已知在全部人中随机抽取1人抽到喜爱打篮球的学生的概率为
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否认为喜爱打篮球与性别有关?说明你的理由.(参考公式:,其中)

设全集是实数集
(1)当时,求
(2)若,求实数的取值范围.

如图,已知二次函数的图像过点,直线,直线(其中为常数);若直线与函数的图像以及直线与函数以及的图像所围成的封闭图形如阴影所示.
(1)求
(2)求阴影面积关于的函数的解析式;
(3)若过点可作曲线的三条切线,求实数的取值范围.

已知函数,其中.
(1)若曲线在点处的切线方程为,求函数的解析式;
(2)讨论函数的单调性;
(3)若对于任意的,不等式上恒成立,求的取值范围.

某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为米,高为米,体积为立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为元(为圆周率).
(1)将表示成的函数,并求该函数的定义域;
(2)讨论函数的单调性,并确定为何值时该蓄水池的体积最大.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号